

LA-UR-17-26224

Approved for public release; distribution is unlimited.

Title: A year in the life of a LANL secondee: HE gas gun experiments at TA-40

Author(s): Burns, Malcolm

Intended for: Presentation to the technical community at AWE.

Issued: 2017-07-24

A year in the life of a LANL secondee: HE gas gun experiments at TA-40

Malcolm J Burns mjburns@lanl.gov

Contents

- Where have I been hiding?
- Comp B
- Ring up induced shock initiation
- Liquid NM
- Shallow Angle
- Overdriven

NNSA Labs

TA-40 (M9 - Shock and Detonation Physics)

Chamber 9

Gun	Gas	Max Breech Pressure (PSI)	Launch Tube diameter (mm)	Velocity Range (km/s)	Target Chamber Vacuum (mTorr/mbar)
Single	Не	5,000	72	0.1 to 1.1	50 / 0.07
2 Stage	Не	15,000	50	<1 to 3.6	50 / 0.07

YEAR ONE

Comp B

- UK hot isostatically pressed Comp B
 - 59.5/39.5/1 RDX/TNT/Wax
 - Density ~1.701 g/cc (US 1.71 g/cc)
- 7 Sustained Pulse Gas Gun shots
 - Wave profiles, Pop plot, Hugoniot...
 - ...CREST model
- 3 short shock shots
- 2 low pressure Hugoniot shots

Shot Setup

Shot Setup

Shot Setup

- 9 Embedded Gauges
- 3 Tracker Gauges
- 1 (or 2) Stirrup Gauges

Standard Target

Longer run distance

Low pressure

Shot Hugoniots

'Typical' wave profile

Tracker Data

Pop plot

Low Pressure Shots

Shot S: 206 m/s, 0.40 GPa

Shot R: 470 m/s, 1.08 GPa

Hugontiot (Us, up)

Hugoniot (P, up)

Short Shock

0.5 mm Kel-F 0.2 g/cc foam

Wave profiles

Conclusions

- Shock initiation of UK Comp B
 - Hugoniot (US-up, P-up)
 - Pop plot
- Piezoelectric effect in RDX
- Data for CREST model

Future work

- Double shock
 - Straddle the phase boundary
 - Weak first shock no reaction
 - Stronger first shock some reaction
- Thin pulse
- Shallow angle
 - 10 degree
 - Short run distance (Pop plot)
- Measuring piezoelectric effect

Ring up induced shock initiation

- Common shock initiation scenarios
 - Sustained pulse
 - Double shock
 - Thin pulse
 - Ramp loading
 - Traditional ring up
- Alternative shock initiation scenario
 - Using the traditional ring up of a low impedance material between two high impedance anvils
 - Ring up induced shocks into HE sample
- Test of reactive burn models such as CREST

Ring-up Hugoniots

1D reactive burn modeling (CREST)

Modeling experimental aims

- shock loci
- ring duration
- reaction in first shock

Particle velocity predictions

Experimental setup

EDC35 Bottom Wedge

referio pias

EDC35 Top Wedge

Target post machining

Sapphire flyer

Completed EDC35 target with TPX/Sapphire ring up discs

Sapphire disc with stirrup gauge

Results

2 mm TPX on target V_p 2.17 km/s

2 mm TPX in Projectile V_p 2.21 km/s

Results

4 mm TPX on target V_p 2.9 km/s

4 mm TPX on target V_p 3.17 km/s

X-T plot (Shot O)

Ring up pressure states

Pop plot

- Wave coalescence at 3.68 mm, 2 μs
- Detonation at 4.97 ± 0.4 mm
- Detonation occurs 1.29 mm from coalescence
- Fit to Pop plot using distance from coalescence

RUISI Conclusions

- Shock ring-up in a TATB based explosive measured
- Desensitization of explosive observed
 - 21.4 GPa shock = 1.3 mm run to detonation
 - Run to detonation of 4.97 mm equivalent to a 15 GPa shock input
- Fit to Pop plot using distance from coalescence
 - As with double shock experiments

RUISI Future Plans

- Comparison to a range of reactive burn models
- Comparison to traditional ring up experiments
- Study of ring-up in both CHEs and IHEs
- Improve design to resolve more shocks

Liquid explosives

Nitromethane targets build and ready...

Target bottom wedge

Target top wedge

Marked, ready for gauge

Gauge stretching

Top wedge glued

Lid with stirrup gauge

Typical results

- Measuring superdetonation velocities
 - Microwave Interferometry
- Superdetonation decay to steady state
- Comparison with overdriven

D M Dattelbaum, S A Sheffield, B D Bartram, L L Gibson, P R Bowden and B F Schilling, *The shock sensitivities of nitromethane/methanol mixtures*, Journal of Physics: Conference Series, Vol 500, Part 18.

YEAR TWO

Shallow angle shots

- Doing what you can with the left overs...
- 10° wedges
- Very short run distance
 - 4 gauges <1mm</p>
 - 10 gauges in 2.6 mm
- EDC29 x1
- EDC31 x1
- EDC32 x1
- EDC35 x3

Overdriven/short run

- EDC31, EDC35, EDC37
- Ta flyers
- Cu, Ti cover plates
- Overdriven x 4
 - 0.5 to 6 mm range
 - 500 μm spacing
- Short run distance x3
 - 0.15 to 1.5 mm range
 - 250 μm spacing
- PDV (14 channels)

Acknowledgements

LANL

 Rick Gustavsen, Lee Gibson, Brian Bartram, Justin Jones, Austin Goodbody, John Lang

AWE

 Nick Whitworth, Caroline Handley, Brian Lambourn, James Ferguson, Paula Rosen

What else...?

Truckin'

Deep frying turkey

Schmokin' a joint (pork)

Any questions?

